ASPIRE STUDY MCA Entrance Classes

www.aspirestudy.in | www.mcaclasses.in

Daily NIMCET Practice Paper at Telegram: https://t.me/aspirestudy

Paper - 6 (Parabola)

1.	If the tangents to the parabola $y^2 = 4ax$ at (x_1, y_1) and (x_2, y_2) meet at (x_3, y_3) , then			
	(a) x_1, x_2, x_3 are in G.P. and y_1, y_2, y_3 are in A.P.			
	(b) x_1, x_2, x_3 are in A.P.			
	(c) y_1, y_2, y_3 are in G.P.			
	(d) y_1, y_2, y_3 are in A.P.			
2.	If the line $3x - 4y + 5 = 0$ is a tangent to the parabola $y^2 = 4ax$, then a is equal to			
	(a) $\frac{15}{16}$ (b) $\frac{4}{5}$ (c) $-\frac{4}{3}$ (d) $-\frac{5}{4}$			
3.	The equation of the parabola with focus at $(0, 3)$ and the directorix $y + 3 = 0$ is			
	(a) $y^2 = 12 x$ (b) $y^2 = -12 x$			
	(c) $x^2 = 12 y$ (d) $x^2 = -12 y$			
4.	The point on the parabola $y^2 = 8x$ whose distance from the focus is 8, has x co-ordinate as			
	(a) 0 (b) 2 (c) 4 (d) 6.			
5.	A line touches the circle $x^2 + y^2 = 2a^2$ and also the parabola $y^2 = 8ax$. Its equation is			
	(a) $y = \pm x$ (b) $y = \pm (x + c)$ (c) $y = \pm (x + 2a)$ (d) $y = \pm (x - 2a)$			
	(c) $y = \pm (x + 2a)$ (d) $y = \pm (x - 2a)$			
6.	The parabola $y^2 = 4ax$ passes thro' the point (2, -6), then the length of its latus rectum is			
	(a) 18 (b) 9 (c) 6 (d) 16.			
7.	The line $y = 2x + c$ is a tangent to the parabola $y^2 = 16x$, if c equals			
	(a) -2 (b) -1 (c) 0 (d) 2 .			
8.	The tangents at the points $(at_1^2, 2at_1)(at_2^2, 2at_2)$ on the parabola $y^2 = 4ax$ are at right angles if			
	(a) $t_1 t_2 = -1$ (b) $t_1 t_2 = 1$			
	(c) $t_1 t_2 = 2$ (d) $t_1 t_2 = -2$.			
9.	If $(at^2, 2at)$ are the co-ordinates of one end of a focal chord of the parabola $y^2 = 4ax$, then the co-cordinates of the			
	other end are			
	(a) $(at^2, -2at)$ (b)- $(at^2, -2at)$			
	(c) $\left(\frac{a}{t^2}, \frac{2a}{t}\right)$ (b) $\left(\frac{a}{t^2}, -\frac{2a}{t}\right)$			
10.	The co-ordinates of a point on the parabola $y^2 = 8x$, whose focal distance is 4, are			
	(a) $(\frac{1}{2}, \pm 2)$ (b) $(1, \pm 2\sqrt{2})$			
	$\langle L \rangle$			
	(c) $(2, \pm 4)$ (d) N.O.T.			

Daily Practice Paper at Telegram: https://t.me/aspirestudy

Answer Key will be available in next paper.

MCA Entrance Coaching Classes in Kanpur Aspire Study Contact No. 8400072444, 7007286637

Answer Key Paper 5 (Cirlce)

01.C	02.B	03.C	04.A	05.B
06.B	07.D	08.C	09.A	10.C

Join Online Course for MCA Entrance - www.aspirestudy.in

Test Series for all MCA Entrance Exam	Click Here	
Previous Year Questions Topic wise and Paper wise	Click Here	
Free Video Lectures	Click Here	
Aspire Study Android App	Click Here	
Aspire Official Website	Click Here	
For Any Query 8400072444, 70		